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Abstract 23 

Feedbacks between the land and the atmosphere can play an important role in the water cycle 24 

and a number of studies have quantified Land-Atmosphere (L-A) interactions and feedbacks 25 

through observations and prediction models. Due to the complex nature of L-A interactions, the 26 

observed variables are not always available at the needed temporal and spatial scales. This work 27 

derives the Coupling Drought Index (CDI) solely from satellite data and evaluates the input 28 

variables and the resultant CDI against in-situ data and reanalysis products. NASA’s AQUA 29 

satellite and retrievals of soil moisture and lower tropospheric temperature and humidity 30 

properties are used as input. Overall, the AQUA-based CDI and its inputs perform well at a 31 

point, spatially, and in time (trends) compared to in-situ and reanalysis products. In addition, this 32 

work represents the first time that in-situ observations were utilized for the coupling 33 

classification and CDI. The combination of in-situ and satellite remote sensing CDI is unique 34 

and provides an observational tool for evaluating models at local and large scales. Overall, 35 

results indicate that there is sufficient information in the signal from simultaneous measurements 36 

of the land and atmosphere from satellite remote sensing to provide useful information for 37 

applications of drought monitoring and coupling metrics. 38 

39 
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1. Introduction 40 

In the absence of strong advective influences, land-atmosphere (L-A) coupling 41 

(Seneviratne et al. 2010) drives the diurnal cycle of clouds and precipitation that can greatly 42 

impact the water cycle. As a result, there has been a great deal of work to quantify L-A 43 

interactions and feedbacks through observations and prediction models. Much of this work has 44 

been carried out by the Global Energy and Water Exchanges Project (GEWEX) Global 45 

Land/Atmosphere System Study (GLASS) local land-atmosphere coupling (LoCo; Santanello et 46 

al. 2011) working group. As part of this work a suite of diagnostics has been developed, ranging 47 

in applicability from observations to models and spanning a broad range of spatiotemporal scales 48 

(Ferguson and Wood 2011; Lintner et al. 2014; Dirmeyer et al. 2014; Tawfik et al. 2015). For 49 

example, mixing diagrams (Betts 1992; Santanello et al. 2009; Stommel 1947) are recommended 50 

to analyze entrainment into clouds and boundary layer processes at a point scale. In contrast, the 51 

rainfall triggering feedback strength (TFS) of (Findell et al. 2011) quantifies how rainfall 52 

frequency changes with surface evaporative fraction and requires model data over a period of 90-53 

days or longer. Perhaps most well-known is the model-based coupling strength of the Global 54 

Land Atmosphere Coupling Experiment (GLACE) (Koster et al. 2006): coherence among 55 

members (Ω) is computed for two model ensembles - one with prescribed soil moisture and the 56 

other with freely evolving soil moisture - and the difference (ΔΩ) is deemed the coupling 57 

strength. The overall applicability of these respective L-A coupling metrics is inherently limited 58 

by the ability to observe the variables required by each, which for most remains only at the point 59 

scale or during short term field experiments due to the simultaneous soil moisture, surface flux, 60 

boundary layer, and precipitation measurement requirements.  61 
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Satellite data offers the ability to obtain some of these variables globally and routinely 62 

(and thus has the most promise for GCM and model development applications), but has been 63 

limited to date (Ferguson and Wood 2011; Roundy et al. 2013a; Taylor et al. 2012). In order to 64 

make satellite observations useful for informing and improving the L-A interactions with in the 65 

models requires further development of satellite-based metrics. The Coupling Drought Index 66 

(CDI) developed by Roundy et al. (2013a), is such a metric since it has application to L-A 67 

interactions and drought and can be calculated entirely from satellite remote sensing. The CDI is 68 

based on a classification of L-A interactions into regimes built off of the work of Findell and 69 

Eltahir (2003a,b), who demonstrated the preferential tendency for convective rainfall over wet 70 

(i.e., wet-advantage) versus dry soils (i.e., dry advantage), depending on low-level atmospheric 71 

humidity (HI) and instability (i.e., convective triggering potential, CTP).  The CTP is a measure 72 

of atmospheric stability defined as the area between the temperature profile and a moist adiabat 73 

from 100 mb to 300 mb above the surface. The HI is a measure of low-level boundary layer 74 

moisture given by the sum of the dew point depression at 50mb and 150 mb above the surface. 75 

Thus, the regimes are strictly a function of lower troposphere temperature profiles and moisture 76 

condition.  77 

The two dimensional space comprised of the CTP and HI relationship can then be 78 

classified into regimes based on the ability of the soil moisture (SM) state to initiate convection 79 

(Findell and Eltahir 2003b). Later work by Ferguson and Wood (2011) applied this classification 80 

approach to different datasets and regions, and showed that the classified space presented by 81 

Findell and Eltahir was too stringent. Roundy et. al (2013a) developed a method of using local 82 

statistics of top layer soil moisture to classify the wet-advantage and dry-advantage sub-spaces 83 

within the CTP-HI space regionally. This approach separates the CTP-HI space into bins and 84 
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uses the Two-Sample Kolmogorov–Smirnov to compare the distribution of SM in each bin 85 

against the climatological SM. Bins of the CTP–HI space with predominantly wetter soils are 86 

considered wet coupling and bins that are predominantly drier are dry coupling. Bins that are 87 

neither dry nor wet (in a climatological sense) are classified transitional and bins with few 88 

samples are considered atmospherically controlled. The rational for this approach is that there is 89 

an inherent connection between the soil moisture and heat flux partitioning that causes a 90 

persistence into the dry and wet coupling regimes that is driven by the feedback between the land 91 

and the atmosphere. Due to the sensitivity of bin size and the significance level of the KS test, 92 

the classification uses an ensemble approach where each ensemble member utilizes a different 93 

bin size and significance level. This accounts for the sensitivity of these classification parameters 94 

and provides a means to quantify the uncertainty. The final discrete classification is determined 95 

based on the uncertainty in each bin (see Roundy et al. (2013a) for more details). Although there 96 

is similarity between the Findell and Eltahir (2003b) and Roundy et al. (2013a) classification, the 97 

latter is based on soil moisture and includes days with and without convective precipitation. To 98 

denote this difference, the regime names in Roundy et al. are referred to simply as ‘dry coupling’ 99 

and ‘wet coupling’ to indicate the persistent nature of the overall dry and wet events, 100 

respectively.  101 

A schematic of the three variables used in the classification (CTP, HI, and SM) and the 102 

classified CTP-HI space for a grid cell in the Southern Great Plains (SGP) using the MERRA 103 

reanalysis is given in Fig. 1a. As illustrated in Fig. 1a, the CTP is calculated by integrating the 104 

area between the moist adiabat and the temperature profile. The CTP in Fig. 1a is positive and 105 

indicates an unstable atmosphere. If the moist adiabat is cooler than the temperature profile, then 106 

the CTP is negative and indicates a stable atmosphere. The HI is a measure of the atmospheric 107 



6 
 

humidity and is calculated as the sum of the dew point depression at 50 and 150 mb above the 108 

surface. A large value of HI, as shown in Fig 1a, is indicative of a dry atmosphere. As the dew 109 

point temperature approaches the temperature profile, the atmosphere moves closer to saturation 110 

and the HI decreases. A climatological sample of daily CTP, HI and SM are then used to create 111 

the classification of the CTP-HI space. To do this the CTP-HI space is broken up into bins and 112 

each is classified based on the soil moisture values that fall into that bin by the method described 113 

above. Once the CTP-HI space is classified it is used to generate a daily coupling classification 114 

based on the location of the CTP and HI for that day. For example, given the classified CTP-HI 115 

space in Fig. 1, a day with CTP of 400 J/kg and a HI of 30 C would be classified as dry 116 

coupling.  117 

Multiple days with the same coupling classification are considered to be an event and are 118 

called dry or wet coupling events. These events can persist for days to weeks. An example of a 119 

persistent dry and wet coupling event that occurred in the same year (2000) for a grid cell in the 120 

SGP is given in Fig. 1b based on the MERRA reanalysis. Vertical dashed lines denote the 121 

beginning and ending of the event as determined by the daily classification, where the start of the 122 

event is the first day with a daily classification of dry or wet coupling respectively and the end of 123 

the event is the last day of the consistent daily classification of dry or wet coupling. Persistent 124 

events, such as those depicted in Fig. 1b, can have large impacts the local water and energy 125 

cycle. To demonstrate this, timeseries of daily average SM, Evaporative Fraction (EF, ratio of 126 

latent heat flux to available energy), Boundary Layer Height (BLH), the Lifting Condensation 127 

Level (LCL, the level to which a parcel of air can be lifted adiabatically before it becomes 128 

saturated) deficit (difference between the LCL and BLH) and the nighttime and daytime 129 

precipitation are also included. The dry coupling event is typified by low soil moisture, a small 130 
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surface EF, a large boundary layer height and a large LCL deficit. Toward the end of the dry 131 

coupling event the BLH increases and the LCL deficit decreases due to an increase in BLH. In 132 

contrast, the wet coupling event has high soil moisture, a large EF, small BLH and a small LCL 133 

deficit. The wet coupling event also shows a decrease in the LCL towards the end of the event, 134 

however BLH also decreases which indicates that the decrease in the LCL deficit is due to a 135 

decrease in the LCL due to the large latent heat flux. Daytime precipitation occurs during both 136 

dry and wet coupling events, however, the precipitation is less frequent and of a smaller in 137 

magnitude during the dry coupling event. Although the persistence in these coupling regimes can 138 

be explained by L-A feedbacks, it is important to note that advected moisture into the region also 139 

plays a key role (Song et al. 2015) and any dry or wet coupling event is ultimately a combination 140 

of local feedback mechanism and large-scale circulation patterns.  141 

The cumulative negative (dry coupling→drying) and positive feedback (wet coupling→142 

wetting) of these events is the foundation of the Coupling Drought Index (CDI), which is simply 143 

the number of dry coupling days minus the wet coupling days, divided by the total number of 144 

days over a period of time. CDI has a range from -1 (all wet coupling) to +1 (all dry coupling) 145 

and gives an average measure of coupling over the chosen time window. The CDI has been 146 

successfully applied in the evaluation of reanalysis and seasonal forecasts (Roundy et al. 147 

2013a,b; Roundy and Wood 2014).  148 

One of the unique characteristics of metrics based on the CTP, HI and SM is that these 149 

variables can be derived from simultaneous measurements from instruments onboard NASA’s 150 

AQUA satellite. Specifically, the Atmospheric Infrared Sounder (AIRS) provides temperature 151 

and moisture profiles that can be used to estimate the CTP and HI while measurements from the 152 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) instrument can be used to 153 
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derive soil moisture. The simultaneous measurement of both land and atmospheric variables 154 

from the AQUA satellite provides a unique large-scale and observationally-based dataset for 155 

developing coupling metrics suited for evaluating weather and climate models. This work aims 156 

to assess the utility and uncertainty of the satellite data for application to the coupling 157 

classification. This is done by first introducing the in-situ, satellite and reanalysis datasets and 158 

methods utilized in this study (section 2). Next, a comparison of the measurements and the 159 

derived variables (CTP, HI and SM) across datasets is made (section 3.1) followed by an 160 

evaluation of utilizing these variables to the coupling classification and CDI in section 3.2. The 161 

CDI from remote sensing is then compared to other common surface and boundary layer 162 

variables from reanalysis in section 3.3 and is followed by discussion and conclusions in section 163 

4.  164 

2. Datasets and Methods 165 

2.1 Datasets 166 

 In this work, four different datasets are used to calculate the CTP, HI and SM needed for 167 

the CDI classification and includes satellite remote sensing, reanalysis and in-situ data.  Table 1 168 

provides a summary of the datasets used, the type of data and temporal range of the dataset that 169 

was utilized in this study. The satellite remote sensing data is from the NASA AQUA satellite, 170 

which includes the Atmospheric Infrared Sounder (AIRS) as well as the Advanced Microwave 171 

Scanning Radiometer-EOS (AMSR-E). The AIRS data used in this study is from the Level 3 172 

Version 6 data product and provides 12 vertical levels of consistent measurements of 173 

temperature and humidity (Susskind et al. 2011). These AIRS observations are provided twice 174 

daily at 1:30AM and 1:30PM local time on a 1° x 1° global grid from August 2002 to present. 175 

Only the 1:30 AM (descending overpass) data is used in this study, as it provides a better 176 
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measure of the atmosphere in early morning before the impact of the daytime surface heat fluxes. 177 

These observations of atmospheric temperature and humidity enable the calculation of the CTP 178 

and HI. The measurements from the Advanced Microwave Scanning Radiometer-EOS (AMSR-179 

E) aboard AQUA are used to derive soil moisture from the Land Surface Parameter Model 180 

(LPRM) (Owe et al. 2008) and is representative of the top 2-cm soil layer. Unfortunately, the 181 

AMSR-E instrument failed in 2011 and limits the availability of soil moisture data from 2002-182 

2011. 183 

Reanalysis products are also used in this study as they provide global, continuous and 184 

long-term records of the climate system constructed by combining observations and models.  185 

Reanalysis data sets also provide a means for initializing forecasts models with the best 186 

temporally and spatially continuous estimates of earth system variables for weather and climate 187 

forecasts. It is important to remember that although reanalysis assimilates observations, there is 188 

still a large component that is based on the parameterizations and assumptions inherent in the 189 

model. Therefore, while reanalysis may assimilate a similar set of observations, they may 190 

provide different representations of the climate due to the differences in the assimilation 191 

technique and modeling.  192 

Two different reanalysis datasets are considered, NASA’s Modern-Era Retrospective 193 

analysis for Research and Applications (MERRA; Rienecker et al. 2011) and the National 194 

Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR; Saha 195 

et al. 2010). These datasets were chosen due to their global coverage and availability. MERRA is 196 

based on NASA’s Goddard Earth Observing System (GEOS-5; Rienecker et al. 2011), which 197 

utilizes the Catchment LSM (Koster et al. 2000). The top soil layer in Catchment represents the 198 

uppermost 0–2cm layer. MERRA has a 0.5 x 0.667 degree horizontal resolution over the globe 199 
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with 72-layer vertical resolution and the assimilated data is provided at 6-hourly increments from 200 

1979-present. CFSR includes the GFSv2 atmospheric component with 64-layers in the vertical 201 

with a horizontal resolution of T382 (0.313°), a coupled ocean model MOM4 with 40 vertical 202 

layers, and the Noah land surface model (Ek et al. 2003), which has four soil layers that cover 0-203 

10cm, 10-40cm, 40-100cm and 100-200cm respectively. Although CFSR has a T382 horizontal 204 

resolution, the atmospheric data is archived at a 0.5° resolution, while the land surface data is 205 

archived at the T382 resolution. The original CFSR has a record length from 1979 through 206 

March of 2011, however in April 2011 an updated version of CFSv2 was put into operation to 207 

produce real-time CFSR data through the present (Saha et al. 2014). These combined datasets 208 

make up the whole of the CFSR data used in this study that provides 6-hourly analysis data from 209 

1979 to present.  210 

  The last type of data utilized in this study is in-situ data and provides direct 211 

measurements of the atmosphere and the land surface as part of the Department of Energy’s 212 

(DOE’s) continuous record of observational data from ARM-SGP (covering a large part of OK 213 

and KS).  Because of this unique dataset that includes atmospheric and surface variables, the 214 

SGP has been the test site for a number of studies (Santanello et al. 2013, 2015). Specifically, 215 

radiosonde profiles (http://dx.doi.org/10.5439/1021460) and top layer soil moisture from the Soil 216 

Water and Temperature Profiling System (SWATS; http://dx.doi.org/10.5439/1150274) from the 217 

ARM central facility (36.610°N, 97.4899°W) near Lamont Oklahoma were utilized. The 218 

SWATS provides 6 levels of soil moisture measurements for two soil profiles (east and west) 219 

that are separated by a distance of 1 meter. Only the measurements at 5cm are utilized and are 220 

calculated as the average of the two profile measurements. The radiosonde data provides high 221 

vertical resolution measurements of atmospheric temperature and humidity that can be utilized 222 
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for calculating the CTP and HI. The radiosonde data is routinely collected four times a day at 223 

approximately 5:30, 11:30, 17:30 and 23:30 UTC and the soil moisture is collected hourly.  224 

2.2 Methods 225 

 One of the challenges of comparing all the datasets is the different spatial resolution, 226 

domains and temporal ranges. To make consistent comparisons all the datasets are up-scaled to 227 

the 1° x 1° global grid of the AIRS data through bin averaging. To make a comparison to the 228 

SGP site (36.610°N, 97.4899°W), the containing grid cell (36.5°N, 97.5°W) from the 1° x 1° 229 

global grid of the AIRS is used. In addition to spatial differences, there is also a temporal 230 

inconsistency between the datasets. The AQUA satellite data is acquired around 1:30 AM (07:30 231 

UTC) local time, where the reanalysis data is provided every 6 hours (00, 06, 12, 18 UTC) and 232 

the in-situ is also available approximately every six hours (05:30, 11:30, 17:30, 23:30 UTC) 233 

which is a 1.5 hour and 2-hour difference for the reanalysis and in-situ measurements 234 

respectively. To account for this difference in time, the SM and atmospheric profile data from in-235 

situ and reanalysis are linearly interpolated to correspond with the satellite overpass. This 236 

temporal linear interpolation in time is done before calculating the CTP and HI. This temporal 237 

interpolation provides a reasonable estimate since the nighttime profiles of temperature and 238 

humidity are typically slowly varying in the early morning hours (e.g. 12:00-6:00 AM local time) 239 

in terms of their bulk structure in the lower troposphere, while SM evolves on much slower 240 

timescales overall. 241 

 These spatially and temporally consistent estimates of CTP, HI and SM are used to 242 

classify the CTP-HI space and give a daily coupling classification following the procedures 243 

outlined in Roundy et al. (2013a). Due to the spatial consistency of the coupling regimes, earlier 244 

work used all the grid cells in the entire Southeast United States for the classification (Roundy et 245 
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al. 2013a). While there is general consistency in the classification over regions with similar 246 

climate, a regional classification leads to abrupt spatial changes in when moving across regional 247 

boundaries. To overcome this limitation, Roundy et al. (2013b) included the local classification 248 

of each grid cell while maintaining regional consistency by utilizing the surrounding grids cells 249 

to provide a spatially consistent classification. As compared to utilizing the grid data only, 250 

incorporating the surrounding grid cells provides an increased sample size that leads to a robust 251 

ensemble that accounts for the uncertainty in the classification. This technique results in a 252 

classification with weakened spatial heterogeneity as compared to the raw atmospheric profiles 253 

and SM, but still represents the larger spatial patterns. This methodology of using the 254 

surrounding grid cells is used to provide the coupling classification for the reanalysis and remote 255 

sensing datasets. 256 

As this is the first time that in-situ observations have been used in the classification 257 

methodology, the classification of point data presents some challenges. One major challenge is 258 

producing a unique classification for the in-situ data given the absence of surrounding grid cells 259 

to incorporate in the classification. One of the key aspects of the classification methodology is to 260 

quantify the uncertainty in the CTP-HI space by using an ensemble of bin sizes and significance 261 

levels. The ensemble parameters (i.e. number of bin sizes, significance levels and uncertainty 262 

thresholds) were developed by Roundy et al. (2013b) for gridded data that incorporate the 263 

nearest grid cells and have been used for a number of studies (Roundy et al. 2013b; Roundy and 264 

Wood 2014; Santanello et al. 2015; Song et al. 2015). Applying the ensemble parameters from 265 

the gridded data to a single point drowns out the signal due to the impact of small bin sizes and 266 

strict significant levels for the smaller sample size. To account for this difference in the in-situ 267 

data, a series of test were performed with the AQUA data to adjust the ensemble parameters to 268 
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achieve a consistent classification between utilizing a single grid cell only and the grid cell with 269 

the surrounding grid cells. This resulted in bin sizes ranging from 7-17 and significance levels 270 

from 10% to 15%, as compared to bins ranging from 10-35 and significance levels from 1% to 271 

5%. The lower significance level indicates more uncertainty in the classification and that resulted 272 

in a point classification with a smaller regime classification. This is consistent with the results 273 

from Roundy et al. (2013a) that showed that a smaller sample size resulted in a consistent yet 274 

smaller regime classification. Notwithstanding the smaller regime classification, the point 275 

specific classification parameters yield a consistent classification and are used for the in-situ 276 

data.  277 

To produce a unique classification that accounts for the characteristics of a dataset 278 

requires a training period that must be consistent across all the datasets due to the sensitivity of 279 

training period on the classification. The maximum consistent training period across all datasets 280 

is an 9-year period from 2003-2011. Although the classification of the CTP-HI space is only 281 

done for 2003-2011, the daily coupling classification only requires daily values of CTP and HI 282 

once the CTP-HI space is classified. Therefore, the analysis will focus on the full period of data 283 

availability from 2003-2015 for all datasets (see Table 1). In this sense the period from 2012-284 

2015 acts as a cross validation period as the CDI is being applied for period that is different from 285 

the training period. 286 

3. Results 287 

3.1 Derived Variable Intercomparison 288 

 Observations from AQUA are first compared with in-situ measurements of the three 289 

variables used in the CDI, the CTP, HI and SM. A comparison of the atmospheric profiles of 290 

temperature and humidity (given as dew point temperature) for the in-situ observations and the 291 
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satellite data are given in Fig. 2 for a day in a dry year (2006) and wet year (2007) in the SGP. In 292 

comparing these datasets, the higher level of vertical detail in the radiosonde data is evident. 293 

Notwithstanding the low resolution in the vertical, the satellite profiles of atmospheric 294 

temperature show a good agreement with the in-situ observations. In contrast, the lack of vertical 295 

resolution in the satellite observations is more damaging in terms of dew point temperature. 296 

These characteristics directly translate to the CTP and HI. For the CTP, there is good agreement 297 

between the in-situ and satellite observations, with small relative differences. The HI on the other 298 

hand shows a larger disagreement between the in-situ and satellite observations due to the lack of 299 

vertical detail in the dew point temperature from AIRS. These results are consistent for both the 300 

dry and wet year. The number of observations in the CTP-HI range (50mb to 300mb above the 301 

surface) varies by day and location. For the examples shown in Fig. 2, the satellite observations 302 

have 3 and 2 measurements in the CTP-HI range compared to the 516 and 411 measurements 303 

from in-situ. This represents a substantial difference in the vertical that is noticeable in Fig. 2 and 304 

is likely one of the main causes for the discrepancy between the CTP and HI.  305 

 The above analysis only considers two days chosen at random during a dry and wet year, 306 

but comparing the CTP and HI over a larger time period and extending the comparison to include 307 

the comparison of in-situ observations with reanalysis can yield further insights. This 308 

comparison is given in Fig. 3 for the same location in the SGP but covering all available data 309 

from 2003-2015. For each variable, only days that have data from in-situ, satellite and reanalysis 310 

are shown in Fig. 3. This results in a CTP and HI comparison that includes data from 2003-2015, 311 

while the SM comparison only includes 2003-2011 due to the short record of AMSR-E data. For 312 

the CTP, the satellite observations show the largest scatter with in-situ observations with a 313 

Pearson and Spearman correlation of 0.71 and 0.78 as compared to 0.94 and 0.96 for MERRA 314 
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and 0.92 and 0.94 for CFSR. A similar relationship can be seen for the HI, with the reanalysis 315 

datasets showing a strong correlation with in-situ, while the satellite data shows much more 316 

scatter with a Pearson and Spearman correlation of 0.74 and 0.73. Although the two days shown 317 

in Fig. 2 indicate that the HI is dry compared to the in-situ observations , the regression line 318 

matches well with the one-to-one line with a slope of 0.97 and x-intercept of 1.26 that indicates 319 

that there is a wet bias (AQUA HI too low), particularly for the driest HI values from in-situ. The 320 

larger scatter between satellite CTP and HI and in-situ is likely due to the low resolution of the 321 

vertical levels from satellite that fails to capture the fine details (see Fig. 2).  322 

Fig. 3c shows the in-situ SM at the ARM site compared against the AQUA/AMSR-E SM 323 

retrieval and the reanalysis products. The SM for each dataset is normalized by the maximum 324 

and minimum value (essentially resulting in a moisture availability) in order to account for the 325 

difference in the dynamic ranges of SM in each product. CFSR shows the highest correlation 326 

with in-situ SM with a Pearson and Spearman correlation of 0.66 and 0.69. MERRA and 327 

AQUA/AMSR-E SM have slightly lower correlations, of 0.58-0.63 and 0.56-0.6 respectively. 328 

Overall, the SM datasets show a greater spread and much lower correlations than the CTP or HI. 329 

There are three main reasons why the soil moisture data does not compare as well as the CTP 330 

and HI across the datasets. First, the inconsistency is likely partially due to the nature of soil 331 

moisture heterogeneity at a single site versus that of a large grid cell. While there is a similar 332 

difference in scale for the CTP and HI, the atmosphere is more homogeneous over the grid scale 333 

compared to the SM. Second, there are linear features present in the in-situ data that show little 334 

sensitivity to changes in SM from the reanalyses and satellite. This is a known limitation of the 335 

SWATS instrument where it is insensitive to soil moisture variations at certain thresholds (and is 336 

being rectified by the installation of new SM instruments at the SGP sites). The third reason for 337 
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the inconsistency is the difference in the depth of each of the measurements. The in-situ 338 

observations are at 5cm, while MERRA and AQUA cover the 0-2cm layer and CFSR covers the 339 

0-10cm layer. This could be the reason that the CFSR matches better with the in-situ since the 340 

average point of the top-layer matches with the in-situ measurement. Notwithstanding the spatial 341 

scale, measurement errors and vertical difference in the measurements, there is still a reasonable 342 

amount of consistency that can capture larger regimes of SM that makes it useful application 343 

with the CDI. 344 

3.2 Coupling Classification and CDI 345 

This section extends the previous comparisons to the classification of the CTP-HI space 346 

and the CDI. As described above, the classification identifies areas in the two-dimensional space 347 

made up of the CTP and HI that have consistent statistics of soil moisture. Thus, the classified 348 

CTP-HI space is an integration of the three variables previously compared that identifies a 349 

connection or “coupling” of these variables. The classified CTP-HI space from in-situ, satellite 350 

and both reanalysis datasets is given in Fig. 4 for the SGP. All datasets show areas classified as 351 

dry coupling and wet coupling and show relative consistency between wet and dry coupling 352 

locations within the CTP-HI space. The in-situ classification has smaller regions of wet and dry 353 

coupling and a boxier shape due to the smaller sample size that necessitated and adjustment of 354 

the ensemble parameters as part of the classification algorithm. 355 

The overlap of dry coupling and wet coupling regimes within the CTP-HI space with in-356 

situ classification is quantified as the number of bins in the CTP-HI space with the same 357 

coupling regime classification as in-situ relative to the total number of bins defined as that 358 

coupling regime from the in-situ and given as a percentage. MERRA shows a consistency of 359 

100% and 96% for wet and dry coupling respectively. CFSR has a consistency for both wet and 360 
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dry coupling at 100%. The AQUA classification is 82% consistent with in-situ classification for 361 

the wet coupling regime and 87% consistent for the dry coupling regime. Given this measure, 362 

there are two reasons that consistency could be less than 100%; first a difference in size of the 363 

regime space and second a difference in location. Given the small size of the in-situ regimes, the 364 

lower consistency between in-situ and satellite is due to the location, not the size. The AQUA 365 

classification shows a translation down the CTP dimension for both the wet and dry coupling 366 

regime. Consistency in wet coupling is highest for both MERRA and CFSR, which also have the 367 

highest correlation with in-situ data for CTP and HI. CFSR has the highest consistency with dry 368 

coupling and showed the highest correlation with SM. It is not surprising that the AQUA 369 

classification has a lower consistency with in-situ compared to the reanalysis, given the 370 

difference in the CTP, HI and SM shown in Fig. 3. Even though the difference in the location of 371 

the regimes results in a lower consistency for the AQUA dataset, the overall patterns across the 372 

datasets are comparable. This difference in the location of the coupling regimes in the CTP-HI 373 

space across datasets was one of the main reasons that a local-dataset specific classification of 374 

the CTP-HI space was developed by Roundy et al. (2013). 375 

Although there are inconsistences among the datasets in terms of the coupling 376 

classification and the input, the coupling classification and resultant CDI are based on the 377 

temporal persistence in dry or wet coupling regime and it is arbitrary if the actual location of the 378 

regimes (i.e. in Fig. 4) are consistent. Furthermore, once the CTP-HI space is classified using the 379 

soil moisture data, only the CTP and HI are needed to produce a daily classification and calculate 380 

the CDI. This is particularly fortunate for the AQUA satellite and allows the calculation of the 381 

CDI beyond 2011 even though soil moisture data is no longer available. A comparison of the 382 

timeseries of the monthly CDI from 2003 to 2015 is given in Fig. 5a and shows consistency in 383 
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the temporal variability the datasets. This is partially due to the CDI capturing consistent 384 

temporal relationships within coupling regimes that are not impacted by the inconsistencies 385 

previously discussed.  386 

Notwithstanding the consistency in the CDI among the datasets there are some noticeable 387 

differences. First, the in-situ CDI has a lower magnitude than the reanalysis. This is particularly 388 

noticeable for the extremely dry months (positive) and wet months (negative). This is likely due 389 

to the smaller area classified as dry and wet coupling in the CTP-HI space (Fig. 4). The satellite 390 

CDI magnitude is also smaller in amplitude as compared to reanalysis. This is consistent with 391 

AQUA not being able to capture the extremes of HI (as discussed earlier). However, the satellite 392 

and in-situ CDI does capture the relative peaks of dry (2011, 2012) and wet (2007) regimes well. 393 

In comparing the two reanalysis datasets, CFSR has a higher CDI than MERRA for most 394 

months. This is likely due to the larger boundary layer growth as a result of a persistent dry bias 395 

in the PBL (Santanello et al. 2015).  396 

The consistency between the CDI of the datasets is primarily seen in the summer months 397 

(May-Sep), while the winter months generally have a low magnitude and there is more scatter 398 

across the datasets. This is not surprising given the dominate nature of the coupling regimes in 399 

the summer time. Since the summer months are more relevant to land-atmosphere interactions 400 

and the CDI, the monthly CDI is compared in Fig. 5b for the summer months. The dark gray 401 

points are for the training period (2003-2011) while the light gray points are from 2012-2015. 402 

The overall correlations for reanalysis and satellite with in-situ CDI are significant at a 99% 403 

confidence level across, with a Pearson and Spearman correlation of 0.85 and 0.83 for MERRA, 404 

0.8 and 0.7 for CFSR and  0.68 and 0.68 for AQUA. There is also no noticeable degradation in 405 

the relationship with the in-situ data outside of the training period.  The relative rankings are 406 
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consistent with the previous analyses that examined the variables and classification that goes into 407 

the CDI (Fig. 3 and Fig. 4). Specifically, MERRA is more consistent with in-situ data at the SGP 408 

site, followed by CFSR and then AQUA. 409 

Even though the MERRA reanalysis is more consistent with the in-situ data then the 410 

other datasets, it is important to remember that up to this point the analysis has only considered a 411 

single point and may or may not be representative of other locations. In fact, the ability to have 412 

observations over the globe is one of the major advantages of using satellite remote sensing to 413 

estimate the CDI. The CDI over the Contiguous United States is shown in Fig. 5c for MERRA, 414 

CFSR and AQUA for June of 2007. There is overall consistency across the datasets with the 415 

dominate spatial patterns evident in both reanalysis and satellite CDI and show the wet 416 

conditions in the Northwest, and the Southern Great Plains, as well as the drought in the 417 

intermountain region and in the Southeast. The spatial patterns are weaker for the satellite CDI, 418 

particularly for the magnitude and extent of the wet coupling area. Despite the weaker spatial 419 

patterns and limitations of the satellite data (vertical resolution, short record, course spatial 420 

scale), it still captures the primary signals and has potential to yield useful information as a large-421 

scale observation. 422 

3.3 CDI relationship to other variables 423 

The CDI captures the intensification, persistence and recovery of drought through the 424 

persistence in the dry coupling and wet coupling regime. While it is clear from Fig. 1 that there is 425 

a connection between variables typically associated with L-A interactions and the coupling 426 

regimes, the relationships between CDI and these variables has never been quantified. Since 427 

these variables have different means and variance, each one is normalized to a standardized 428 

index by subtracting the mean and dividing by the standard deviation. In this manner, the CDI 429 
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from satellite remote sensing is compared with other L-A associated variables from reanalysis. 430 

The monthly-standardized anomalies of Precipitation (P), Total Soil Moisture (TSM), Daily 431 

Average Temperature (DAT) and Vapor Pressure Deficit (VPD), EF, BLH, CTP and HI are 432 

compared to the monthly anomaly of CDI. The correlations of the AQUA CDI with the 433 

aforementioned variables from MERRA and CFSR are given in the first two panels of Fig. 6 and 434 

the MERRA CDI compared to MERRA variables are given in panel three. Because AQUA itself 435 

is limited in terms of observing the majority of these individual variables, we compare AQUA 436 

CDI to the reanalysis products which are assumed to capture the bulk behavior of these coupling-437 

related properties of the L-A system. Each panel includes the correlation of the spatial average 438 

standard anomaly for six climate regions (colors) and the entire U.S (grey and white boxes 439 

reflected around zero) for months in the May-Sep season (open shapes) and the full year (filled 440 

shapes).  441 

For all three comparisons, the CDI and precipitation show a higher correlation in the 442 

western portion of the U.S. that only shows a minor increase during the summer months. The 443 

spatial difference in the correlation between the CDI and precipitation is less pronounced in the 444 

AQUA-CFSR comparison as compared to the AQUA-MERRA or MERRA-MERRA 445 

comparison. This suggests that the MERRA precipitation (which is known to have major 446 

limitations in timing and intensity over much of CONUS) may be the cause of this spatial 447 

difference. There is also less of a seasonal difference in the MERRA-MERRA comparisons, 448 

suggesting a greater seasonal difference in the AQUA CDI compared to MERRA. Total soil 449 

moisture shows a similar relationship with CDI and precipitation in that it has a higher 450 

correlation in the west and a relatively small seasonal difference. In fact, for the AQUA-MERRA 451 

and MERRA-MERRA comparison the correlations are nearly the same. This suggests that there 452 
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is a high correlation between precipitation and TSM in MERRA, as would be expected within 453 

the same reanalysis system. In contrast, the AQUA-CFSR comparison for TSM shows a much 454 

lower correlation and little spatial difference. 455 

The daily average temperature and vapor pressure deficit show a higher correlation with 456 

the CDI and a greater seasonal difference as compared to precipitation and soil moisture. The 457 

AQUA CDI correlation with DAT and VPD nearly doubles during the summertime compared to 458 

the full year and is more spatially homogeneous. The MERRA CDI and the MERRA VPD has 459 

less of a seasonal difference in correlation and there is consistency in the correlation across the 460 

different regions of the country, with a higher correlation in the west for both the DAT and VPD 461 

that is consistent with P and TSM. This same relationship is weaker for AQUA-CFSR as 462 

compared to AQUA-MERRA and MERRA-MERRA. This suggests a consistent spatial 463 

relationship between the CDI and MERRA variables that may be a unique attribute to MERRA 464 

and not CFSR. 465 

The evaporative fraction has one of the lowest correlations with the CDI across all 466 

comparisons and also shows little difference in the seasonal correlation. The CDI is not well 467 

correlated with evaporative fraction for Midwest and especially the Northeast, while the highest 468 

correlations are generally seen in the South and High Plains. BLH shows similar spatial patterns, 469 

however CDI shows an overall higher correlation with BLH and an increase in the seasonal 470 

variability as compared to the evaporative fraction. This indicates that the CDI is more strongly 471 

correlated with the atmospheric side of L-A coupling and shows the greatest strength in the areas 472 

that are considered hotspots (Koster et al. 2006). However, since the BLH is highly correlated 473 

with the sensible heat flux, it may be that the energy cycle side of the land surface plays an 474 

important role in the CDI evolution. The AQUA CDI is also more strongly correlated with the 475 
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BLH from CFSR compared to MERRA BLH, which is consistent with Santanello et al. (2015) 476 

who found the MERRA BLH to be underestimated and lacking sensitivity to extremes.   477 

The correlation of the CDI to the CTP and HI is among the strongest and is not surprising 478 

given that the CTP and HI are used to derive the CDI. The CTP has a larger seasonal difference 479 

in its correlation to the CDI as compared to the HI. In contrast the HI shows more spatial 480 

variability in its correlation with the CDI. Overall the satellite based CDI shows slightly lower 481 

correlations with other reanalysis variables then those seen internally within the MERRA 482 

reanalysis. This is not surprising given that reanalysis variables should be more consistent, while 483 

the satellite observations are more independent.  484 

4. Discussion and Conclusions 485 

The aim of this study is to assess the utility of CDI-based variables and metrics derived 486 

from satellite remote sensing for global applications by comparing them with in-situ observations 487 

and reanalysis datasets. Overall, the AQUA CDI performs well at a point, spatially, and in time 488 

(trends) compared to in-situ and reanalysis products. This is especially promising given the 489 

inherent limitations in vertical profile resolution and soil moisture retrieval, as advances in 490 

satellite-based profiles (e.g. improved AIRS retrievals) and soil moisture retrievals (e.g. SMAP) 491 

will provide improved estimates of L-A and CDI related quantities in the future. The satellite 492 

observations of atmospheric temperature and humidity profiles and the derived metrics compare 493 

well with in-situ observations, although differences exist, mainly due to the limitation of vertical 494 

resolution of the satellite data (Fig. 2).  495 

Although the lower vertical resolution of the atmospheric satellite data resulted in lower 496 

correlations of the CTP and HI from satellite with in-situ data, the satellite data has sufficient 497 

correlation with in-situ data to capture the main signal (Fig. 3). Both reanalysis datasets show an 498 
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equally strong correlation with the in-situ observations for CTP and HI, while the satellite data 499 

shows a lower correlation with in-situ HI as compared to the CTP. It should be noted that to date 500 

there has been very little focus or evaluation of AIRS L3 profile retrievals over land due to 501 

inherent difficulties in retrieving lower troposphere and PBL thermodynamics (due to factors 502 

such as limited weighting functions and surface emissivity; Susskind pers. communication). 503 

Moisture retrieval is inherently more difficult than temperature, and thus the results are not 504 

unexpected in that temperature (and CTP) performs better than moisture (and HI) against this 505 

small sample. The AIRS support product (L2) has a finer vertical (100-levels) and spatial (45km) 506 

resolution that may improve somewhat on the retrieval of lower tropospheric humidity and 507 

temperature. In addition, the latest version of AIRS (V6.28, to be released publically in V7 in 508 

2017) shows some improvements related to humidity retrieval that are due to improved IR 509 

channel sampling. However, any major improvements in space-based CTP-HI retrieval and 510 

vertical resolution must come with next-generation satellite missions dedicated to retrieving PBL 511 

profiles.  512 

Given the large sample of days required by the CDI, it is likely that the bulk signal of the 513 

CTP and HI and its relative variability over the 9+year period will still provide a self-consistent 514 

representation of dry and wet coupling regimes and variability. Figure 3 bears this out, and 515 

suggests that despite the scatter, there are still decent correlations in CTP and HI that can be 516 

exploited to represent dry vs. wet regimes.  Likewise, the large scatter in SM should not prohibit 517 

the SM data from being representative of dry vs. wet regimes and surface conditions. Combining 518 

the CTP, HI and SM to identify areas of dry and wet coupling, the in-situ classification has a 519 

high consistency with the reanalysis while satellite observations have the lowest consistency 520 

(Fig. 4). This is not surprising given that MERRA and CFSR showed the highest correlations 521 
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with in-situ data of CTP, HI and SM (Fig. 3). Although there is a lack of consistency in the exact 522 

location of the dry and wet coupling regimes within the CTP-HI space across all the datasets, all 523 

the datasets, including satellite, indicate similar shapes and relative locations of the regimes. This 524 

indicates that all datasets show the existence of these regimes. This is particularly a novel finding 525 

of this study since this work represents the first time that in-situ observations have been applied 526 

to the Roundy et al. coupling classification. The in-situ and satellite remote sensing CDI provides 527 

a unique combination of observations that allows for an evaluation of model data at local and 528 

large scales that could be exploited in future studies. It is important to note that the in-situ 529 

comparisons are only valid at a single point over the SGP. While the SGP is an ideal location to 530 

have such in-situ observations, it would be ideal to compare in-situ data from other areas with 531 

satellite remote sensing. It is expected that in mountainous, perpetually cloudy, and cold regions 532 

it is unlikely to retrieve profiles as well down to the surface. However, this is a promising start, 533 

and indicates that satellite data (despite its limitations) can provide the information needed for 534 

such complex metrics as the CDI. 535 

Applying the classification of the CTP-HI space to daily classification of the coupling 536 

state and the calculation of the CDI indicated similar results in that the in-situ CDI showed the 537 

strongest consistency with MERRA, however the monthly CDI from satellite still had a temporal 538 

correlation of 0.68 with the in-situ observations (Fig. 5a and b). Furthermore, the spatial patterns 539 

of CDI for satellite remote sensing are consistent with the reanalysis for June 2007 over the U.S. 540 

This indicates that both temporal and spatial patterns are largely captured by the CDI from 541 

satellite remote sensing and further demonstrates the potential of the AQUA dataset. There is 542 

however, a smaller magnitude both in space and in time in the CDI compared to the reanalysis. 543 

The lower magnitude CDI is especially noticeable during wet coupling as indicated in Fig. 5a 544 
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and c. This limitation could be partially due to missing values in the record, particularly during 545 

the wet coupling regime when there is more cloud cover that can limit the satellite observations. 546 

Missing values make the CDI move closer to zero, since it has the potential to reduce the 547 

numerator but not change the denominator in calculating the CDI. Future work will explore a 548 

revised CDI that would be less impacted by cloud cover and more relevant for satellite 549 

application. The limitation in the CDI magnitudes could also be partially due to the lack of 550 

resolution in the vertical from the atmospheric observations from satellite as shown in Fig. 2 551 

along with difficulties in observing atmospheric humidity. It is hoped that through improvements 552 

in instruments and algorithms the quality of the satellite data will be increased and this limitation 553 

can be overcome.  554 

Notwithstanding the shortcomings of the satellite data, it still has the potential to yield 555 

useful information as a large-scale observational record. As compared to other variables the CDI 556 

has the strongest correlation with the CTP and HI, from which it is derived, but also has strong 557 

correlation with VPD and DAT. These correlations are the highest over the U.S. during the 558 

summertime when land-atmosphere feedbacks play a stronger role in the evolution of the 559 

daytime temperature and humidity. The CDI also has a reasonable correlation with BLH. The 560 

correlations between CDI and the various variables were also lower when comparing satellite 561 

CDI to reanalysis variables as compared to reanalysis CDI. This is not surprising as there should 562 

be a level of consistency between the variables from the same reanalysis product. The results 563 

indicate that the CDI has the strongest relationship with atmospheric variables (DAT and VPD) 564 

that are greatly influenced by the land surface heat fluxes, e.g. sensible and latent heat fluxes, 565 

however it is not extensively correlated with any one variable and has its own unique 566 

characteristics. These unique characteristics could make it a useful drought-monitoring tool as it 567 
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has the potential to integrate multiple drivers and impacts of drought that may be missed by 568 

indices typically utilized for drought monitoring.  569 

Overall this work demonstrates that there is sufficient information in the simultaneous 570 

measurements of the land and atmosphere from satellite remote sensing to provide useful 571 

information to the applications of drought monitoring and coupling metrics that can be used to 572 

evaluate GCMs. While it is recognized that the variables and metrics currently available through 573 

satellite remote sensing are not always the optimal choice for L-A coupling metrics, it is hoped 574 

that through further development, satellite based CDI can be utilized to provide new insights  and 575 

application relevant for drought monitoring and prediction. 576 
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Table Caption List 680 

Table 1. A summary of the relative the relative characteristics from each dataset used to derive 681 

the CDI. 682 

  683 
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Figure Caption List 684 

Figure 1. The basis for the coupling regime classification method (Roundy et al., 2013) where a) 685 

is an example of the three variables (CTP, HI, SM) used in the coupling classification and the 686 

resulting classification of the CTP-HI space based on Soil Moisture (SM) with b) an example of 687 

a dry and wet coupling event for a point (36.5°N, 97.5°W) in the Southern Great Plains in the 688 

U.S based on data from the MERRA reanalysis. 689 

 690 

Figure 2.  The atmospheric profile and corresponding CTP and HI at 07:30 UTC AQUA (peach) 691 

and 05:30 UTC in-situ (red) for a day during a) a dry year (2006-06-07) and b) a wet year (2007-692 

06-03) for the Southern Great Plains location (36.5°N, 97.5°W). 693 

 694 

Figure 3. Comparison of the a) CTP, b) HI and c) SM from satellite remote sensing (AQUA) and 695 

reanalysis (MERRA, CFSR) with in-situ observations for a point in the Southern Great Plains 696 

(36.5°N, 97.5°W) for the available data from 2003-2015. The regression line (red), Pearson 697 

correlation (rp) and Spearman correlation (rs) are also given. 698 

 699 

Figure 4. The classified CTP-HI space from in-situ observations, satellite (AQUA) and 700 

reanalysis (MERRA, CFSR) for a point in the Southern Great Plains (36.5°N, 97.5°W). The 701 

percent consistent of each coupling regime as compared to in-situ observations is also given. 702 

 703 

Figure 5. Comparison of In-situ CDI with reanalysis (MERRA and CFSR) and satellite remote 704 

sensing (AQUA) for a point in the Southern Great Plains (36.5°N, 97.5°W) for a) Monthly 705 

Timeseries from 2003-2015, b) scatter plots of the monthly values for May through September 706 
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with the dark gray points from 2003-2011 and the light gray from 2012-2015 and  c) the spatial 707 

variability of the CDI in June 2007. The regression line (red), Pearson correlation (rp) and 708 

Spearman correlation (rs) are also given in b). 709 

 710 

Figure 6. The monthly standardized anomaly Spearman correlation (2003-2015) of the CDI with 711 

Precipitation (P), Total Soil moisture (TSM), Daytime Average Temperature (DAT), Vapor 712 

Pressure Deficit (VPD), Evaporative Fraction (EF), Boundary Layer Height (BLH), Convective 713 

Triggering Potential (CTP) and Humidity Index (HI) for CDI from AQUA and other variables 714 

from MERRA (Top), AQUA CDI and CFSR variables (Middle) and MERRA CDI and MERRA 715 

variables (Bottom) for climate regions of the U.S. (colored shapes) and the average over the U.S. 716 

plotted as boxes reflected around zero. The horizontal red dashed lines indicate statistical 717 

significance at p = 0.05 for the monthly values from May-Sep (r = 0.24) and all the monthly 718 

values significance (r = 0.16). 719 

  720 
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Table 1. A summary of the relative the relative characteristics from each dataset used to derive 721 

the CDI. 722 

Dataset Type Spatial 

Coverage 

Atmospheric 

Levels 

Variables Temporal 

Range 

AQUA Satellite Global 12 CTP-HI: AIRS 

SM: AMSR-E 

2003-2015 

2003-2011 

MERRA Reanalysis Global 72 CTP-HI: 

MERRA 

SM: MERRA 

1979-2015 

CFSR Reanalysis Global 64 CTP-HI: CFSR 

SM: CFSR 

1979-2015 

In-situ Observations Point: ARM 

Central Facility, 

Lamont OK 

> 1000 CTP-HI:  

Radiosonde 

SM: SWATS 

2003-2015 

 723 

  724 
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 725 

Figure 1. The basis for the coupling regime classification method (Roundy et al., 2013) where a) 726 

is an example of the three variables (CTP, HI, SM) used in the coupling classification and the 727 

resulting classification of the CTP-HI space based on Soil Moisture (SM) with b) an example of 728 

a dry and wet coupling event for a point (36.5°N, 97.5°W) in the Southern Great Plains in the 729 

U.S based on data from the MERRA reanalysis. 730 

  731 
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 732 
Figure 2.  The atmospheric profile and corresponding CTP and HI at 07:30 UTC AQUA (peach) 733 

and 05:30 UTC in-situ (red) for a day during a) a dry year (2006-06-07) and b) a wet year (2007-734 

06-03) for the Southern Great Plains location (36.5°N, 97.5°W).  735 



36 
 

 736 

Figure 3. Comparison of the a) CTP, b) HI and c) SM from satellite remote sensing (AQUA) and 737 

reanalysis (MERRA, CFSR) with in-situ observations for a point in the Southern Great Plains 738 

(36.5°N, 97.5°W) for the available data from 2003-2015. The regression line (red), Pearson 739 

correlation (rp) and Spearman correlation (rs) are also given. 740 

  741 

  742 
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 743 

Figure 4. The classified CTP-HI space from in-situ observations, satellite (AQUA) and 744 

reanalysis (MERRA, CFSR) for a point in the Southern Great Plains (36.5°N, 97.5°W). The 745 

percent consistent of each coupling regime as compared to in-situ observations is also given. 746 

   747 
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 748 

Figure 5. Comparison of In-situ CDI with reanalysis (MERRA and CFSR) and satellite remote 749 

sensing (AQUA) for a point in the Southern Great Plains (36.5°N, 97.5°W) for a) Monthly 750 

Timeseries from 2003-2015, b) scatter plots of the monthly values for May through September 751 

with the dark gray points from 2003-2011 and the light gray from 2012-2015 and  c) the spatial 752 
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variability of the CDI in June 2007. The regression line (red), Pearson correlation (rp) and 753 

Spearman correlation (rs) are also given in b). 754 

  755 
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 756 

Figure 6. The monthly standardized anomaly Spearman correlation (2003-2015) of the CDI with 757 

Precipitation (P), Total Soil moisture (TSM), Daytime Average Temperature (DAT), Vapor 758 

Pressure Deficit (VPD), Evaporative Fraction (EF), Boundary Layer Height (BLH), Convective 759 

Triggering Potential (CTP) and Humidity Index (HI) for CDI from AQUA and other variables 760 

from MERRA (Top), AQUA CDI and CFSR variables (Middle) and MERRA CDI and MERRA 761 

variables (Bottom) for climate regions of the U.S. (colored shapes) and the average over the U.S. 762 

plotted as boxes reflected around zero. The horizontal red dashed lines indicate statistical 763 
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significance at p = 0.05 for the monthly values from May-Sep (r = 0.24) and all the monthly 764 

values significance (r = 0.16). 765 


